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Abstract: Molten-alkali  etching has been widely used to reveal dislocations in 4H silicon carbide (4H-SiC),  which has promoted
the identification and statistics of dislocation density in 4H-SiC single crystals. However, the etching mechanism of 4H-SiC is lim-
ited misunderstood. In this letter,  we reveal the anisotropic etching mechanism of the Si  face and C face of 4H-SiC by combin-
ing molten-KOH etching,  X-ray photoelectron spectroscopy (XPS) and first-principles investigations.  The activation energies for
the  molten-KOH  etching  of  the  C  face  and  Si  face  of  4H-SiC  are  calculated  to  be  25.09  and  35.75  kcal/mol,  respectively.  The
molten-KOH  etching  rate  of  the  C  face  is  higher  than  the  Si  face.  Combining  XPS  analysis  and  first-principles  calculations,  we
find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and
the removal  of  oxides by molten KOH. The faster  etching rate of  the C face is  caused by the fact  that the oxides on the C face
are unstable, and easier to be removed with molten alkali, rather than the C face being easier to be oxidized.
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1.  Introduction

4H  silicon  carbide  (4H-SiC)  has  shown  great  success  in
high-power and high-frequency electronics, owing to its excel-
lent properties such as a wide bandgap, high thermal conduc-
tivity, high-electron saturation velocity, and high chemical sta-
bility[1−3]. Despite the great success of 4H-SiC in electrical vehi-
cles  and  photovoltaic  converters,  the  potential  of  4H-SiC  in
ultra-high-power  electronics  has  not  been  fully  addressed
due  to  the  high  density  of  dislocations  that  deteriorate  the
device performance and exert  reliability  issues[4−6].  For  exam-
ple, dislocations have been found to increase the leakage cur-
rent  of  4H-SiC-based  high-power  devices[7, 8].  Although  most
of basal plane dislocations (BPDs) in 4H-SiC substrates are con-
verted to threading edge dislocations (TEDs) during homoepi-
taxy,  the  residual  BPDs  in  homoepitaxial  4H-SiC  still  trigger
bipolar  degradation  of  4H-SiC-based  bipolar  devices[9, 10].
Therefore,  discriminating the type of dislocations and provid-
ing  accurate  dislocation  density  is  critical  to  the  application
of 4H-SiC substrates and epitaxial layers.

Molten-alkali etching has been widely used to reveal dislo-
cations  via  the  preferential  etching  of  dislocations  in  4H-SiC.
By  removing  strained  atoms  surrounding  the  dislocations
lines,  molten-alkali  etching  is  capable  of  forming  characteris-
tic etch pits of different types of dislocations in 4H-SiC. It  was
proposed  to  distinguish  threading  screw  dislocations  (TSDs),

(̄)

TEDs,  and  BPDs  by  the  two-dimensional  shape  and  size  of
etch  pits.  This  usually  needs  additives  to  enlarge  the  degree
of  distinction  among  the  etch  pits  of  TSDs,  TEDs,  and  BPDs.
Taking  a  further  step,  we  have  found  that  the  TSDs,  thread-
ing mixed dislocations (TMDs), TEDs and BPDs can be discrimi-
nated  by  the  incline  angles  to  the  molten-alkali-etching-
induced pits[11, 12]. This facilitates the accurate statics of disloca-
tion  density  in  4H-SiC.  However,  this  approach  is  only  effec-
tive  to  the  (0001)  Si  face  of  4H-SiC.  The  revelation  of  disloca-
tions  on  the  C  face  usually  needs  higher  energy
approaches,  such  as  alkali  vapor  etching  and  microwave
plasma  etching[13, 14].  Researchers  attribute  the  anisotropic
etching  of  4H-SiC  to  the  different  activation  energy  between
the Si face and the C face of 4H-SiC[15−17]. However, the under-
lying  mechanism  for  the  anisotropic  etching  of  4H-SiC  is  still
ambiguous.  This  hinders  the  optimization  of  the  etching  and
dislocation revealing of 4H-SiC.

In this letter, we investigate the anisotropic etching mecha-
nism  of  the  Si  face  and  C  face  of  4H-SiC  by  combining
molten-KOH etching,  X-ray  photoelectron spectroscopy (XPS)
and  first-principles  investigations.  The  activation  energy  for
the  molten-KOH  etching  of  the  C  face  is  lower  than  that  of
the  Si  face.  The  etching  rate  of  the  molten-KOH  etching  of
the C  face  is  higher  than that  of  the  Si  face.  We find that  the
C  face  shows  a  much  higher  C=O/C−O  percentage  (16.31%)
than  that  of  the  Si  face  (4.8%),  predicting  more  oxides  of  C
existing  on  the  C  face.  First-principles  calculations  imply  the
higher  the  oxide  coverage,  the  more  unstable  the  surface  is.
In  a  word,  the  molten-alkali  etching  of  4H-SiC  is  proceeded
by the cycling of the oxidation of 4H-SiC by the dissolved oxy-
gen  and  the  removal  of  oxides  by  molten-alkali  etching.  Our
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work  facilitates  the  optimization  of  the  molten-alkali  etching
conditions  of  4H-SiC  and  paves  the  way  for  better  revealing
dislocations via the preferential etching of 4H-SiC. 

2.  Experimental section

High-purity  semi-insulating  (HPSI)  4H-SiC  single  crystals
were  grown  by  physical  vapor  transport  (PVT)  technology.
The growth temperature and growth pressure were set in the
range  of  2200−2300  °C  and  1−10  mbar,  respectively.  4H-SiC
wafers  were  sliced  and  mechanically  polished  on  both  sides.
The  wafers  were  cut  into  20  ×  20  mm2 samples  prior  to
molten-alkali  etching.  Molten-alkali  etching  experiments
were performed at temperatures from 475 to 600 °C with the
duration  of  60  min  in  a  nickel  crucible.  In  order  to  measure
the  etching  rate  of  the  C  face  and  Si  face  separately,  we
stacked  two  4H-SiC  samples  together,  and  wrapped  them
tightly with a nickel  wire.  This exposed the Si  face and C face
of the top and bottom 4H-SiC sample to molten KOH, respec-
tively  [Fig.  1(a)].  After  molten-KOH  etching,  the  4H-SiC  sam-
ples  were  ultrasonically  cleaned  with  deionized  water  and
15%  hydrochloric  acid  solution  to  remove  residual  KOH  con-
tamination  on  the  surface  of  4H-SiC  samples.  The  samples

were  then  cleaned  by  acetone,  ethanol,  and  finally  dry  with
nitrogen  gas.  The  etching  rates  of  the  Si  face  and  C  face  of
4H-SiC were calculated by dividing the change of sample thick-
ness with the etching duration.

α
×

After  molten-KOH  etching,  the  surface  morphologies  of
the Si  face and C face were observed by scanning white light
interferometry  (SWLI,  ContourX-200,  Bruker).  XPS  measure-
ments  were  conducted  with  an  ESCALAB  Xi+  system,  using
an Al  K  monochromatic radiation of  1486.6 eV.  The vacuum
condition  for  the  test  was  2 10−10 mbar,  and  all  the  bind-
ing  energies  of  the  XPS  date  were  calibrated  with  the  C  1s
peak at 284.8 eV. 

3.  Results and discussion

Figs.  1(b)–1(e)  show  the  surface  morphologies  of  the
stacked  4H-SiC  samples  after  molten-KOH  etching  at  475  °C.
As  shown  in Fig.  1(b),  the  exposed  Si  face  of  the  top  4H-SiC
samples show the high density of the dislocation-related etch
pits.  For  the  protected  C  face  of  the  top  4H-SiC  sample  and
the protected Si  face  of  the  bottom 4H-SiC  sample,  there  are
almost no etch pits,  indicating that the inner sides of the 4H-
SiC  samples  are  protected  from  being  etched  [Figs.  1(c)  and

 

Fig.  1. (Color  online)  (a)  Schematic  diagram  showing  the  experimental  setup  of  molten-KOH  etching,  and  the  oxide-removal  mechanism  of
4H-SiC.  The  surface  morphologies  of  the  molten-KOH-etched  4H-SiC  samples:  (b)  Exposed  Si  face,  (c)  protected  C  face,  (d)  protected  Si  face,
and (e) exposed C face.
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1(d)].  The  situation  for  the  molten-KOH  etching  of  the  C  face
of  the  exposed  bottom  4H-SiC  sample  has  a  relatively
smooth surface [Fig. 1(e)]. This is caused by the isotropic etch-
ing  of  the  C  face  prevailing  over  the  preferential  etching
along dislocations[15].

Since  the  inner  sides  of  the  stacked  4H-SiC  samples  are
protected  from  molten-KOH  etching,  we  calculate  the  etch-
ing  rates  of  the  Si  face  and  C  face  in  the  temperature  range
from 475 to 600 °C. The etching rate of the Si face and C face
of  4H-SiC is  calculated by dividing the material-thickness loss
by  the  etching  duration.  As  shown  in Fig.  2,  the  etching  rate
of  the  C  face  is  always  higher  than  that  of  the  Si  face  of  4H-
SiC. The activation energy (Ea) is calculated by the Arrhenius fit-
ting of the molten-KOH etching rate (E): 

E = Ae−
Ea
RT , (1)

where   A   is   constant,   R   is   the   molar   gas   constant
(8.31  J·mol−1·K−1)[18],  and T is  the  etching  temperature.  With
Eq. (1),  the activation energies for the molten-KOH etching of
the Si face and C face of 4H-SiC are estimated to be 35.75 and
25.09  kcal/mol,  respectively,  which  agree  well  with  the
activation  energy  of  SiC  under  molten-KOH  etching
(32.2  kcal/mol[19])  at  450−490  °C  and  plasma  etching
(29.5  kcal/mol[13])  at  1100−1400  °C.  This  indicates  that  the  C
face  is  more  vulnerable  to  molten-KOH  etching,  and  the
removal rate of the C face is faster than that of the Si face.

To  explain  the  anisotropic  etching  of  the  Si  face  and  C
face,  we  carry  out  high-resolution  XPS  scanning  on  the  Si
face  and  C  face  of  the  4H-SiC  sample  that  is  etched  by
molten  KOH  at  525  °C  for  60  min.  Because  the  distorted
atoms  are  removed  during  molten-KOH  etching,  we  cali-
brated  all  the  binding  energies  of  the  XPS  date  with  C  1s
peak at  284.8 eV. Figs.  3(a)  and 3(b)  display the Si  2p peak of
the  Si  face  and  the  C  face  of  molten-KOH  etched  4H-SiC,
respectively.  The  binding-energy  peaks  of  the  Si  2p of  both
the  Si  face  and  C  face  of  the  molten-KOH-etched  4H-SiC  are
located at 100.5 eV. The Si 2p peak can be deconvoluted into
two  peaks,  which  correspond  to  the  characteristic  peaks  of
the Si−C (100.4 eV) bonding and Si−Ox (101 eV) bonding[20, 21].
The binding-energy peaks of the C 1s spectra of the Si face of
the  molten-KOH-etched  4H-SiC  are  located  at  282.6,  284.8

and  286.5  eV,  which  correspond  to  characteristic  peaks  of
C−Si,  C−C/C−H  and  C−O,  respectively  [Fig.  3(c)][22].  For  the  C
1s spectra  of  the  C  face  of  the  molten-KOH  etched  4H-SiC,
the binding-energy peaks are deconvoluted into the character-
istic  peaks  of  C−Si,  C−C/C−H,  C−O  and  C=O  (288.7  eV)
[Fig.  3(d)].  Moreover,  the  C  face  shows  a  much  higher
C=O/C−O percentage (16.31%) than that of the Si face (4.8%).
This indicates that both the Si face and C face are oxidized dur-
ing the molten-KOH etching,  while  more  oxides  are  on the C
face  due  to  the  presence  of  C=O/C−O  bind  characteristics.
Therefore, the molten-KOH etching of 4H-SiC proceeds as fol-
lows[23]: 

SiC + KOH + O → KCO + SiO+HO, (2)
 

SiC + KCO → KSiO + KO + CO, (3)
 

KOH + SiO → KSiO + HO, (4)
 

KCO + SiO → KSiO + CO. (5)

Since  the  removal  of  oxides  by  molten  KOH  is  the  same
process,  the  anisotropic  molten-KOH  etching  of  4H-SiC  is
attributed  to  the  anisotropic  oxidation  of  the  Si  face  and  C
face of 4H-SiC. First-principle calculations are then carried out
to  understand  the  anisotropic  oxidation  of  the  Si  face  and  C
face of 4H-SiC, as implemented in the Vienna ab initio simula-
tion  package  (VASP)[24, 25].  The  projector-augmented  wave
(PAW)  method  is  used  to  describe  the  electron-ion  interac-
tions[26],  with the cut-off energy for the wave function expan-
sion  being  400  eV.  The  structural  relaxations  are  carried  out
using  the  Perdew–Burke–Ernzerhof  (PBE)  exchange-correla-
tion functional[27], until the total energy per cell and the force
on  each  atom  are  converged  to  less  than  1  ×  10−8 eV  and
0.01  eV/Å,  respectively.  Electronic  structures  and  total  ener-
gies  are  calculated by  the  screened hybrid  density  functional
of Heyd, Scuseria, and Ernzerhof (HSE06)[28], with a 26% nonlo-
cal  Hartree−Fock  exchange,  to  make  the  calculated  bandgap
energy  of  4H-SiC  consistent  with  the  experimental  bandgap
energy of 4H-SiC.

1 × 1 2 × 2
3 × 3 √

3 ×
√
3R30°

1 × 1 2 × 2 3 × 3 √
3 ×

√
3R30°

10 × 10 5 × 5
3 × 3 3 × 3

ΔHsurf

We  firstly  investigate  the  most  stable  surface  reconstruc-
tion of the Si  face and C face of 4H-SiC,  with the , ,

,  and  reconstructions  being  considered.
The  surface  reconstruction  structures  are  constructed  using
periodic slab geometries,  which consist  of  eight Si−C bilayers
with a vacuum space of 12 Å in the z-axis dimension. The dan-
gling  bonds  at  the  bottom  layer  are  terminated  by  pseudo-
hydrogen  atoms.  The  atoms  in  the  bottom  three  layers  are
fixed  during  structural  relations  to  simulate  the  infinite  solid.
The  Brillouin  zone  integration  for  the  surface  reconstructions
of , , ,  and  are sampled with the
Monkhorst–Pack  scheme  using  a  Γ-centered , ,

,  and  special k-point  mesh,  respectively.  The  sur-
face energies  of different surface reconstructions are cal-
culated by: 

ΔHsurf = (Esurft − niμi − nH μ̂H) /Asurf. (6)

Esurft ni nHwhere  is  the  total  energy  of  the  slab,  and  are  the

 

Fig. 2. (Color online) Temperature dependence of the etch rates of the
Si face and C face of HPSI 4H-SiC.
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μi μ̂H
Asurf

μSi μC

μSi μC

μ̂H

1 × 1 3 × 3

1 × 1 3 × 3

number  of  Si/C  atoms  and  pseudo-hydrogen  atoms  in  the
slab,  and  are  the  chemical  potentials  of  Si/C  and
pseudo-hydrogen,  and  is  the  area  of  the  slab.  The  sum
of  and  is  limited by the total  energy of  bulk  4H-SiC to
maintain  4H-SiC  in  thermodynamic  equilibrium.  The  individ-
ual  values  of  and  are  limited  by  the  total  energy  per
atom of Si  and C in their  bulk phases to avoid elemental pre-
cipitation. The chemical potential  of pseudo-hydrogen ( )  is
calculated  by  the  pseudomolecule  approach[29, 30].  With
Eq.  (6),  the  calculated  surface  energies  of  the  surface  recon-
structions considered in this work are displayed in Fig.  4(a).  It
is  clear  that  the  surface  energy  of  the  C  face  is  lower  than
that  of  the  Si  face  of  4H-SiC,  indicating  that  the  C  face  is
more  stable.  This  is  because  the  surface  reconstructions  of

 and  have the lowest formation energies on the Si
face  and  C  face,  respectively.  Therefore,  the  reconstructions
of  and  are  the  most  stable  reconstruction  struc-
tures for the C face and Si face, respectively.

(1 × 1)(3 × 3)
It  has  been  proved  that  the  oxygen  locating  at  the

bridge site has the lowest formation energy for the oxidation
of  the  Si  face  and  C  face  of  4H-SiC[31].  Therefore,  we  con-
struct the bridge-site oxygen on the C face  and Si face

 to investigate the anisotropic oxidation of 4H-SiC. The
oxidation  energies  of  the  Si  face  and  C  face  with  different
oxide coverages are calculated by: 

ΔHox = (Eoxt − Esurft − nOμO) /Asurf, (7)

Eoxt Esurft

nO μO

eV/A 

where  and  are the total  energies of  the oxidized sur-
face and perfect surface,  and  are the number and chem-
ical  potential  of  oxygen,  respectively.  As  shown  in Fig.  4(b),
the  oxidation  of  the  Si  face  of  4H-SiC  does  not  cost  energy,
which automatically happens. For the C face of 4H-SiC, the oxi-
dation  barrier  is  lower  than  0.1 ,  which  is  easy  to

occur.  When  the  surface  coverage  of  bridge-site  oxygen
reaches  1/3  monolayer  (ML),  the  oxidized  C  face  decom-
poses  to  partially  oxidized  surface  and  CO  species.  This  indi-

 

Fig. 3. (Color online) XPS high-resolution spectra of molten-KOH etched 4H-SiC wafer. (a) Si 2p spectrum fitting of Si face, (b) Si 2p spectrum fit-
ting of the C face, (c) C 1s spectrum fitting of the Si face, (d) C 1s spectrum fitting of the C face.

 

(1 × 1) (3 × 3)
Fig. 4. (Color online) (a) Surface energies of the Si face and C face with
different surface reconstructions,  and (b)  oxidation energies of  the C
face  and Si face , as functions of the chemical potential
of Si.
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cates  that  although  the  C  face  of  4H-SiC  is  more  stable
against oxidation, the surface of the oxidized C face becomes
unstable against decomposition as the oxidation proceeds.

At  last,  we  discuss  the  molten-alkali  etching  mechanism
of 4H-SiC, as well as the anisotropic etching of the Si face and
C  face.  The  molten-alkali  etching  of  4H-SiC  is  proceeded  by
cycling  of  the  oxidation  of  4H-SiC  by  the  dissolved  oxygen
and  the  removal  of  oxides  by  molten  alkali.  The  faster  etch-
ing rate of the C face is caused by the fact that the oxides on
the  C  face  are  unstable,  and  is  easier  to  be  removed  with
molten  alkali,  compared  with  what  happens  in  the  Si  face  of
4H-SiC. This gives rise to the fast and isotropous molten-alkali
etching of  the C  face  of  4H-SiC.  For  the Si  face  of  4H-SiC,  the
isotropous  molten-alkali  etching  is  slower  than  the  preferen-
tial etching of strained atoms along the dislocation lines of dis-
locations,  which  results  in  the  revelation  of  dislocations  on
the Si face of 4H-SiC. 

4.  Conclusion

In  conclusion,  we  have  revealed  the  anisotropic  etching
mechanism of the Si face and C face of 4H-SiC by experimen-
tal  and  first-principles  investigations.  It  has  been  found  that
the molten-alkali  etching rate of the C face is  faster than that
of Si face. And the activation energies for the molten-KOH etch-
ing  of  the  C  face  is  lower  than  that  of  the  Si  face  of  4H-SiC.
Combining  XPS  analysis  and  first-principles  calculations,  we
conclude  that  the  molten-alkali  etching  of  4H-SiC  is  pro-
ceeded  by  cycling  of  the  oxidation  of  4H-SiC  by  the  dis-
solved  oxygen  and  the  removal  of  oxides  by  the  molten
alkali.  The  faster  etching  rate  of  the  C  face  is  caused  by  the
fact that the oxides on the C face are unstable and are easier
to  remove  with  molten-alkali  etching,  rather  than  the  C  face
being easier to oxidize. 
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